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The gram-negative, soil-dwelling bacterium Burk-
holderia pseudomallei is the causative agent of melioi-

dosis, which is an important cause of lethal community-
acquired sepsis throughout the tropics (1). Melioidosis 
is predicted to be endemic in Nigeria, a country with 
the highest estimated annual incidence, mortality, and 
disease burden in Africa, partly explained by its suit-
able environment and large population (2–4). Clinical 
evidence of melioidosis in Nigeria is scarce and based 
only on traveler-associated cases in the United King-
dom and reports from Nigeria presuming the presence 
of B. pseudomallei (4–7). This study was a collaborative 
effort prompted by the African Melioidosis Workshop 
in Lagos, Nigeria (4); our goal was to determine the en-
vironmental presence of B. pseudomallei in Nigeria. Eth-
ics approval was obtained from the National Health 
Research Ethics Committee of Nigeria (approval no. 
NHREC/01/01/2007-26/03/2019).

We performed an environmental soil sampling 
study based on consensus guidelines for the identifica-
tion of B. pseudomallei (8). We consulted local residents 
and maps to select sites associated with the occurrence 
of B. pseudomallei, as we have done previously (9). Us-
ing a fixed interval grid and samples taken 5 meters 
apart, we collected 100 soil samples per site across 8 
sites in Nigeria during the rainy season in April–May 
2019 (Table; Appendix, https://wwwnc.cdc.gov/
EID/article/29/5/22-1138-App1.pdf). We collected a 
total of 800 samples in the northwestern state Kebbi, 
southwestern state Ogun, and southeastern states Eb-
onyi and Enugu. We collected soil at a depth of 65 cm 
and processed 10 g of soil within 7 days to enable se-
lective enriched culture (8,10). We screened isolates by 
using colony morphology and, if results were suspect, 
used matrix-assisted laser desorption/ionization-time 
of flight mass spectrometry (MALDI Biotyper Com-
pass v4.1 and Compass Library v10; Bruker Daltonics, 
https://www.bruker.com). We subjected all presump-
tive B. pseudomallei isolates to real-time multiplex PCR 
and performed whole-genome sequencing on 9 B. pseu-
domallei isolates and 3 B. thailandensis isolates by us-
ing the NextSeq 500/550 platform (Illumina, https://
www.illumina.com) (Appendix). We then included 
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Melioidosis, caused by the soil-dwelling bacterium Burk-
holderia pseudomallei, is predicted to be endemic in Ni-
geria but is only occasionally reported. This report docu-
ments the systematic identification of the presence of B. 
pseudomallei and B. thailandensis in the soil across mul-
tiple states in Nigeria.



the same B. pseudomallei isolates in our phylogenetic 
comparison and used them for antimicrobial suscep-
tibility testing (Appendix). Sequences for the samples 
in this study are available on the European Nucleotide 
Archive database (project number PRJEB54705, sam-
ple accession nos. ERS12451640–51; https://www.ebi.
ac.uk/ena/browser/home).

By using the methods described, we isolated B. 
pseudomallei from 58 (7.3%) of 800 samples in 5 (62.5%) 
of the 8 sampling sites (Table; Appendix). We observed 
the highest positivity in the southeastern states, with 
rates as high as 38% in Ebonyi and 14% in Enugu. We 
also isolated the nonpathogenic B. thailandensis from 
193 (24.1%) of 800 samples in 4 (50%) of the 8 sam-
pling sites. Antimicrobial susceptibility of the B. pseu-
domallei isolates displayed overall sensitivity against 

antibiotic agents commonly used for the treatment of 
melioidosis, such as ceftazidime, meropenem, and tri-
methoprim/sulfamethoxazole (Appendix). 

We conducted phylogenetic analysis of our 9 se-
quenced B. pseudomallei isolates and 13 additional ge-
nomes originating from Africa, all retrieved from the 
European Nucleotide Archive database. The phyloge-
netic tree revealed a cluster of predominantly continen-
tal Africa origin that included all of the soil isolates from 
Nigeria and a cluster of strains derived mainly from the 
Indian Ocean region (Figure). Our B. pseudomallei iso-
lates did not closely match the previously sequenced 
traveler-associated strain from Nigeria (ERR298772) (7): 
the genome differed by 8,370 to 9,431 core single-nucle-
otide polymorphisms. We speculated that the higher 
positivity in the southeastern states reflects the relative-
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Table. Site characteristics and distribution of Burkholderia pseudomallei at 8 sampling sites in Nigeria, 2019 

Site Location State Place Site characteristics 
Sample holes positive for B. 

pseudomallei 
A Southwestern Ogun Lufoko Rice field, dry 0 
B Southwestern Ogun Ige Rice field, dry 0 
C Northwestern Kebbi Birnin Kebbi* Rice field, moist 4 
D Northwestern Kebbi Birnin Kebbi* Rice field, moist 1 
E Southwestern Ogun Sunmoge Cattle, grassland next to river, moist 0 
F Southeastern Ebonyi Abakaliki Rice field and cassava crops, moist 38 
G Southeastern Ebonyi Abakaliki Rice swamp, wet 1 
H Southeastern Enugu Nenwe Rice field, moist 14 
*The sampling sites in Birnin Kebbi were located 3 km apart from each other. An overview of the geographic distribution of sampling sites for Burkholderia 
pseudomallei can be found in the Appendix (https://wwwnc.cdc.gov/EID/article/29/5/22-1138-App1.pdf). 

 

Figure. Phylogenetic tree of Burkholderia pseudomallei genomes from Nigeria (orange text) and additional genomes originating 
from Africa, all retrieved from the European Nucleotide Archive database. Tree generated by FastTree (http://www.microbesonline.
org/fasttree) based on core single-nucleotide polymorphisms distance and visualized with iTOL (https://itol.embl.de). Colors indicate 
countries of origin. Asterisk indicates a previously sequenced, traveler-associated strain. Scale bar indicates number of nucleotide 
substitutions per site.



ly high annual precipitation in southeastern Nigeria as 
compared with sampling sites in the northwestern and 
southwestern states (Appendix).

Adopting a culture-based approach, combined 
with matrix-assisted laser desorption/ionization-time 
of flight mass spectrometry, real-time PCR, and whole 
genome sequencing allowed us to identify the envi-
ronmental presence of B. pseudomallei. Limitations of 
our study include possible sampling errors and false-
negative samples because we relied on a culture-based 
approach instead of using an additional quantitative 
PCR on soil samples (9). Moreover, we did not collect 
soil samples in multiple seasons to investigate a sea-
sonal pattern, nor did we collect water or air samples.

In conclusion, we documented the systematic 
confirmation of the environmental presence of B. 
pseudomallei and B. thailandensis across multiple states 
in Nigeria. We identified the highest B. pseudomallei 
positivity rates in the southeastern states Ebonyi and 
Enugu. Phylogenetic analysis clustered our B. pseudo-
mallei isolates with previous genomes that originated 
mostly from continental Africa. Our results highlight 
the probability of unrecognized melioidosis in Nigeria 
and warrant the attention of health workers and pub-
lic health officials. Improving capacity and increasing 
awareness, together with environmental, serologic, 
and disease surveillance, is needed to increase our un-
derstanding of the melioidosis burden within Nigeria.
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Presence of Burkholderia pseudomallei in 
Soil, Nigeria, 2019 

Appendix 

Climatological Data 

Appendix Table 1. Annual mean temperature and precipitation of sampled states in Nigeria (1991–2020) 

Location State 
Annual mean 

temperature (°C) Annual precipitation (mm) 
Northwestern Kebbi 28.71 849.46 
Southwestern Ogun 27.55 1367.16 
Southeastern Enugu 26.85 1822.48 
Southeastern Ebonyi 26.88 1966.70 
Annual mean temperature and precipitation data of Nigeria (1991–2020) is derived from the Climate Change Knowledge Portal of the World Bank 
Group (1). 
 

Polymerase Chain Reaction 

We performed a TaqMan real-time multiplex polymerase chain reaction (RT-PCR) assay 

on all presumptive B. pseudomallei isolates based on colony morphology and matrix assisted 

laser desorption/ionization-time of flight mass spectrometry (Bruker Daltonics). We optimized a 

previously described RT-PCR assay with several modifications as discussed hereafter (2). The 

gene targets were as follows: Orf11 for B. pseudomallei, a hypothetical 16.5 kDa protein for B. 

mallei, and fliC for B. pseudomallei, B. mallei, and B. thailandensis. The species-specific primers 

were modified to optimize the reaction (Appendix Table 2). The reaction volume of 20 µL 

consisted of 10 µL SensiFast master mix (Bioline), 5 µL primers-probes mix, and 5 µL of 

bacterial DNA. We extracted DNA of five colonies in 100 µL AE-buffer (Qiagen) at 100°C for 

30 minutes. Bacterial lysates of several colonies were diluted a 100-fold with TE-buffer before 

being added to the final reaction volume. The primers-probes mix was prepared in TE-buffer to a 

final concentration of 2 pmol/µl for primers and 0.4 pmol/µl for probes. We included a positive 

control that consisted of a mix of B. pseudomallei and B. mallei, a no template control, and an 

http://doi.org/10.3201/eid2905.221138
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internal control using the nucleotide sequence of the seal herpesvirus type 1 (PhHV) to check for 

inhibition of the reaction (3). The PCR reaction was run on a LightCycler 480 II (Roche) with a 

denaturation cycle of 5 minutes at 95°C followed by 45 amplification cycles of 10 seconds at 

95°C and 30 seconds at 60°C. An isolate was considered positive when the exponential phase 

was reached. 

 

Appendix Table 2. Overview of primers and probes of the multiplex RT-PCR for Burkholderia species 

Target species Target gene Nucleotide sequence 
Fluorescent 

label 
B. pseudomallei Orf11 forward 5′- ACA AGT GGC CCT ATG GAT TG −3′  
 Orf11 reverse 5′- TCG GTT TCG AAT AAC GGG TA −3′  
 Orf11 probe 5′- ACG ATC TCC GAG AAC GCA CTG AAC A −3′ FAM-BHQ1 
B. mallei 16.5 kDa forward 5′- CGA GCT CAG CAA CCT CGT TA −3′  
 16.5 kDa reverse 5′- CGC GGT CTA CCT TGC ATA TT −3′  
 16.5 kDa probe 5′- CAG TAT CCA GGT TTC ACC GCG CTC GAC −3′ Texas Red-

BHQ1 
B. pseudomallei, B. mallei, 
and B. thailandensis 

fliC forward 5′- GTC AAC AAI CTG CAG GCA AC −3′  

 fliC reverse 5′- CGG TTT CCT GAG IAA AGT ML −3′  
 fliC probe 5′- GGC TCG AAC AAC CTC GCG CAR G −3′ ATTO532-BHQ1 
PhHV PhHV forward 5′- GGG CGA ATC ACA GAT TGA ATC −3′  
 PhHV reverse 5′- GCG GTT CCA AAC GTA CCA A −3′  
 PhHV probe 5′- TTT TTA TGT GTC CGC CAC CAT CTG GAT C −3′ Cy5-BHQ2 
 

Whole-Genome Sequencing 

We performed whole-genome sequencing (WGS) on nine B. pseudomallei and three B. 

thailandensis isolates using the following methods. We extracted DNA of a loopful of bacteria in 

100 µL AE-buffer at 100°C for 30 minutes. Sequences were obtained using the NextSeq 500/550 

platform (Illumina). After demultiplexing, low-quality reads were discarded and adaptor 

sequences were trimmed using Trimmomatic v0.39 (4). High quality reads were used for de novo 

assembly using SKESA v2.4.0 (5). Contigs smaller than 500 bp were discarded for the following 

analyses. Quality of the assemblies was assessed using Quast v5.0.2 (6). The sequencing depth 

was determined by mapping the raw sequencing reads of each isolate to their respective final 

assembly contigs using minimap2 v2.17 (7), then calculating the genome coverage using 

SAMtools v1.14 and BEDtools v2.30.0 (8,9). SNP analysis was performed using kSNP3 v3.1.2 

and visualized using FastTree v2.0 and iTOL v6 (https://itol.embl.de/) (10–12). Species 

identification was confirmed based on WGS data using the software KmerFinder v3.0.2 of the 

Center for Genomic Epidemiology (https://cge.food.dtu.dk/services/KmerFinder/) (13–15). 
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Based on WGS analysis, we phylogenetically characterized nine B. pseudomallei isolates. 

Additional B. pseudomallei genomes originating from Africa with known countries were 

identified via the literature and downloaded from the European Nucleotide Archive database 

(https://www.ebi.ac.uk/ena/browser/home) (16,17). We excluded the B. thailandensis isolates 

from further phylogenetic comparisons. 

Multi Locus Sequence Typing 

Multi locus sequence typing (MLST) was performed on the nine sequenced B. 

pseudomallei isolates using the software MLST v2.0.9 of the Center for Genomic Epidemiology 

(https://cge.food.dtu.dk/services/MLST/) (Appendix Table 3) (21). Raw sequencing reads were 

used as data input and the minimum depth for an allele was set at five times. Information on loci 

and gene function used in the B. pseudomallei MLST scheme can be found elsewhere (22). Next, 

the B. pseudomallei PubMLST curator and database were consulted to assign sequence types 

(STs) and to resolve any queries regarding imperfect matches or novel alleles 

(https://pubmlst.org/organisms/burkholderia-pseudomallei) (23). 

Antimicrobial Susceptibility Testing 

We performed antimicrobial susceptibility testing on the nine sequenced B. pseudomallei 

isolates following the guidelines for B. pseudomallei of the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) (18–20). We used the following antibiotic disks 

(Becton Dickinson) with disk content between parenthesis: amoxicillin-clavulanic acid (20–10 

µg), ceftazidime (10 µg), imipenem (10 µg), meropenem (10 µg), tetracycline (30 µg), 

chloramphenicol (30 µg), trimethoprim-sulfamethoxazole (1.25–23.75 µg), and gentamicin (10 

µg). Of note: gentamicin is not included in the recommendations of EUCAST but was included 

as an additional control measure as we used Ashdown’s selective agar for bacterial isolation. Up 

to four disks were placed per Mueller-Hinton (MHE) agar plate (bioMérieux). Isolates with 

unexpected antibiotic resistance were subjected to gradient strip testing (Liofilchem) to establish 

the minimal inhibitory concentration (MIC) following the previously described methods. Quality 

control was included as per EUCAST’s instructions. 



 

Page 4 of 7 

Appendix Table 3. Multi locus sequence typing of Burkholderia pseudomallei isolates: sequence types and allelic profiles 

Sample ID ENA accession number ST 
Allelic profile 

ace gltB gmhD lepA lipA narK ndh 
BpsC1 ERS12451645 930 1 1 3 2 5 1 1 
BpsC2* ERS12451649 12* 1 1 13 1 5 1* 1 
BpsF1 ERS12451642 1720 1 1 3 2 5 2 1 
BpsF2 ERS12451647 12 1 1 13 1 5 1 1 
BpsF3 ERS12451651 2023 1 1 19 4 1 2 3 
BpsG1 ERS12451646 2023 1 1 19 4 1 2 3 
BpsH1 ERS12451644 2024 1 1 3 1 5 152 1 
BpsH2* ERS12451648 Unknown* 1 12 3 1 1 1* 1 
BpsH3 ERS12451641 2026 1 1 10 1 5 149 1 
*Imperfect narK hit so ST cannot be trusted. Allelic profiles of isolates with an imperfect hit were not uploaded to the PubMLST database. 
Abbreviations: ENA = European Nucleotide Archive, ST = sequence type. 

Antimicrobial Susceptibility Testing 

Antimicrobial susceptibility of sequenced B. pseudomallei isolates displayed overall 

sensitivity against antibiotic agents commonly used for treatment of melioidosis, such as 

ceftazidime, meropenem, and trimethoprim-sulfamethoxazole (Appendix Table 4). However, 

using the disk diffusion method unexpected antimicrobial resistance was observed against 

meropenem in one B. pseudomallei isolate. MIC testing using gradient strips did not confirm 

meropenem resistance as an MIC of 2 mg/L was observed (breakpoint resistance: >2 mg/L). 

 

Appendix Table 4. Antimicrobial susceptibility of Burkholderia pseudomallei isolates following EUCAST’s disk diffusion methods 
Susceptibility testing EUCAST breakpoints 
Antibiotic agent Disk content (µg) Sensitive isolates Zone diameter range (mm) S ≥(mm) R <(mm) 
Amoxicillin-clavulanic acid 20–10 9/9 25–30 50 22 
Ceftazidime 10 9/9 22–28 50 18 
Imipenem 10 9/9 31–37 29 29 
Meropenem* 10 8/9* 22–31 24 24 
Tetracycline* 30 9/9 26–34 23 23 
Chloramphenicol 30 9/9 26–30 50 22 
Trimethoprim-sulfamethoxazole 1.25–23.75 9/9 30–42 50 17 
Gentamicin* 10 0/9 0–0 NA NA 

*Meropenem resistance was not confirmed using a minimal inhibitory concentration test. Tetracycline is used to screen for doxycycline susceptibility. 
Gentamicin is not included in EUCAST’s breakpoints for B. pseudomallei.  
Abbreviations: S = sensitive, R = resistant, NA = not applicable. 
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Appendix Figure. Geographic distribution of sampling sites for Burkholderia pseudomallei in Nigeria, 

2019. Numbers indicate multiple sampling sites. Made with QGIS using Natural Earth data. 


